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Abstract

When the periodic vortex-shedding frequency of a bluff structure ‘‘locks-in’’ with one of the natural frequencies of

the structure, the state is termed synchronization. When this lock-in or detuning state persists over a considerable

period of time, fatigue stresses become predominant which then may lead to structural damage and even failure.

Vortex-excited oscillations of bluff structures are one of the important problems in wind engineering, and wake

oscillator models, especially the Van der Pol or Rayleigh type, have been studied profoundly over the last 20 odd years.

The approach of most researchers is to couple one form of the Rayleigh oscillator with the conventional equation of

motion of a single degree of freedom system. It is emphasized though that, depending on the form of the Rayleigh

equation chosen, convergence to the solution may not be guaranteed, and the problem becomes ill-defined. The

proposed semi-empirical model is of the coupled Rayleigh wake-oscillator type with the equation of motion containing

a series term for the forcing function. The paper highlights the mathematical suitability of the proposed form for the

aerodynamic response of an isolated structure.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The separation of a uniform two-dimensional flow due to its encounter with a bluff body in its path results in

the formation of the two zones of concentrated vorticity, across which a large velocity gradient exists. These are referred

to as the shear layers. Fed by the energy in the oncoming flow, the vorticity in the shear layers keeps growing until

it reaches a critical stage when the two shear layers interact and shed the vorticity in the form of a vortex that con-

vects downstream. This sequence is repeated periodically with the formation of the familiar vortex street (Simiu and

Scanlan, 1996).

For a rigidly fixed cylinder, an alternating, staggered vortex street adequately portrays the phenomenon of vortex

shedding downstream of the cylinder. But the consideration of an elastic system that can move is a more difficult task.
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Nomenclature

a rD2l/(8p2S2M)

C total linear damping constant

cL instantaneous lift coefficient in t domain

D diameter of cylinder

Fa external lift force

FL lift force

f(x) forcing function

f(cL) forcing lift force

fs frequency of vortex shedding, SV/D

fn fundamental frequency of body

Ke total stiffness of springs

kc stiffness of cylinder in lift direction

KL constant value relating to lift force

L characteristic length of cylinder

L Lipschitz constant

l length of cylinder

M mass of cylinder

S Strouhal number

Sr Scruton number, mz/rD2

V fluid stream velocity

v wind velocity

Vair volume of air

x lift displacement

xr dimensionless lift displacement variable,

x/D

a damping constant in Rayleigh equation

g damping constant

d phase shift

e weighted constant for forcing function

based on the value (4M/L)/(prairDL)

e constant denoting small change

e0 proportionality constant

e1 constant related to mass of cylinder

e2 constant related to mass of fluid medium

z damping ratio of cylinder, C/2Mon

r density of fluid medium

rair density of air

t ont

o0 fs/fn

on natural circular frequency of body, 2pfn

os Strouhal circular frequency, 2pfs

(’) first order derivative with respect to

t, d( )/dt
( )0 material time derivative, d( )/dt

( )00 second order derivative, d2( )/dt2
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In addition to the flow interactions leading to the vortex street, there occurs a highly complex feedback effect from the

wake to the elastically supported cylinder. The degree of influence of this feedback upon the phenomenon depends on

the proximity of the Strouhal frequency, fs, to the natural frequency of the elastic system, fn. Over a certain range of

windspeeds, for which the detuning or separation of these two frequencies is close to zero, the periodicity in the wake

locks-in or is synchronized by that of the mechanical system. The shedding frequency abruptly deviates from varying

linearly with the stream velocity, as depicted in Fig. 1, and stays constant with that of the mechanical system. In this

state, the feedback from the synchronized wake to the cylinder intensifies and the response amplitude of the elastically

supported cylinder grows to a maximum limit marking the end of the synchronization range. This phenomenon was

studied by Bearman (1984), who is just one of many researchers in the area of vortex shedding.

The Strouhal frequency is defined as

fs ¼
SV

D
; ð1Þ
Frequency,  f 

Flow velocity,  v 

Lock in region 

fn

f  = Sv/D
S = Strouhal number 
D = effective dimension of 
structure 
fn = natural frequency of 
structure 

Fig. 1. Strouhal frequency, fs versus flow velocity, v.
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where V is the incident wind (fluid) speed, D the lateral dimension of the body, and S the Strouhal number. The

Strouhal number depends on the geometric properties of the body (Ohya et al., 1989).

In experimental work, vortex-induced vibration may be grouped into two categories, depending on the fluid in use,

i.e. air or water. Due to a lower mass ratio (fluid to structure) in the case of air, response amplitudes are considerably

lower than for analogous experiments with water. Further classification is required, depending on whether the cylinder

is allowed to vibrate freely during the loading states or whether it is subjected to forced vibrations where the frequency

and amplitude of vibration are controlled independently. Independent control over the frequency and amplitude of

cylinder oscillation makes it easier to observe the effect of variation of either parameter. For free-vibration experiments,

the vibration amplitude and frequency of vortex shedding keep changing simultaneously as the stream velocity is varied.

In the forced vibration experiments, however, the cylinder vibration may no longer be called vortex-induced, since the

phenomenon is altered from its free state by steady state impulses. It is interesting to note here that the reports of

several investigators indicate that for a certain pair of values of stream velocity, V, and damping ratio, z, within the

synchronization range, the vortex-induced response is bi-stable, that is, the system may respond at either of two distinct,

stable amplitudes. The actual response amplitude is determined by the initial conditions (Shih et al., 1993).
2. Previous research

2.1. Analytical

Wake oscillator models based on the Rayleigh equation or more commonly the Van der Pol oscillator equation can be

placed into two broad categories, based generally on the form of the Rayleigh equation employed. Within these two

categories, there can be further subdivision based on the forcing function of the oscillator, i.e. displacement coupled, velocity

coupled, or acceleration coupled.

Now, starting with the more common system, as employed by Skop and Balasubramanian (1997), this model employs

a velocity-coupled system based on the classical Van der Pol equation. Their model, as given by Eqs. (17) and (18) in

Skop and Balasubramanian, is as follows:

€y þ 2zion;i _y þ o2
n;iy¼ mo2

s q�
2a
os

_y

� �
; ð2Þ

€q�osGðC
2
L0�4q2Þ _q þ o2

s q¼osF _y: ð3Þ

The equations above are reproduced using the same symbols and definitions as in Skop and Balasubramanian (1997).

Now considering the velocity-coupled system above, by making reference to the lift phenomenon, physically it may

be explained, but mathematically the formulation is weak, since it is incomplete, and may lead to divergence as a result

of secular terms in the series expansion. A more traditional and accepted approach would have been to use a truncated

series expression incorporating the velocity term. This secularity could be one reason why the stall term had to be added

to the forcing function of the equation of motion, Eq. (2), to counter the low damping divergence produced.

The second model is that of Facchinetti et al. (2004). This model employs an acceleration-coupled system and is given

in Eq. (6) of Facchinetti et al., as follows:

€y þ 2xdþ
g
m

� �
_y þ d2y¼ s; ð4Þ

€q þ eðq2�1Þ _q þ q¼ f ; ð5Þ

Again these equations are reproduced using the same symbols and definitions as in Facchinetti et al. (2004).

It is to be noted here that this model is based on acceleration-coupling using a single term as defined by f in Eq. (5).

Now, even if this is explained based on energy principles, for the reasons stated above, this may lead to instability and

divergence. It would have proven to be a more complete and compatible formulation if again a truncated series was

used incorporating the second-order acceleration term. This would have also ensured continuity.

Now, considering Eqs. (3) and (5), we see the form of the Van der Pol equation used has the nonlinear term, _q q2. And

because of this particular nonlinear term, it can be shown that this form of the oscillator equation doe not satisfy the

Lipschitz condition; from the theory put forward in the succeeding sections, the Lipschitz condition is one condition to

guarantee that the problem be well-defined and produce a solution. Moreover when dealing with transcendental
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Fig. 2. Model structure for analysis.
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equations, such as the Rayleigh equations, we need to ensure that the problem is well-defined in order that a numerical

solution exists. For ill-defined problems, in progressing towards the solution, as the time steps are reduced, the results

produced may not be meaningful, whether we have velocity coupling or acceleration-coupling, as instability will occur.

The third model is the model proposed in the current paper and is elaborated in Williams and Suaris (2006). The

model stems from that of Hartlen and Currie (1970), and forms the foundation of the present work. The physical system

considered is shown in Fig. 2. The cylinder of diameter D and length l is mounted elastically on springs of total stiffness

Ke, and the total linear damping constant is C, and M is the cylinder mass. The external lift force acting on the cylinder

is Fa, with x being the amplitude in the lift direction. We now introduce dimensionless variables xr and t defined as

xr ¼ ðx=DÞ; t¼ t
Ke

M

� �1=2

¼ont ð6; 7Þ

and dimensionless parameters defined by

z¼
C

2Mon

; a¼
rD2l

8p2S2M
; o0 ¼

fs

fn

¼ S
V

fnD

� �
; ð8; 9; 10Þ

where S is the Strouhal number for the cylinder, V the velocity of the fluid flow with r being the density of the fluid;

fs the vortex shedding frequency which is related to the Strouhal number, S, and fn the natural frequency of the cylinder

on its elastic mounting. The characteristic equation of dynamic equilibrium of the cylinder in dimensionless form

becomes

€xr þ 2z _xr þ xr ¼ ao2
0cL; ð11Þ

where cL is the instantaneous lift coefficient that is influenced by the motion of the cylinder; therefore it is a function of

t. The overdot indicates differentiation with respect to t.
The second part of the mathematical model involves the development of an equation for cL. The approach taken is

well laid out in Hartlen and Currie (1970). The form of the equation for cL will be

€cL�ao0 _cL þ
g
o0
ð_cLÞ

3
þ o2

0cL ¼ forcing term ð12Þ

with a and g being damping terms.

Eqs. (11) and (12) represent the coupled wake oscillator model as developed by Hartlen and Currie.
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3. Proposed model

3.1. Wake oscillator model for isolated cylinder

This section is discussed in detail in Williams and Suaris (2006). Writing the equation of motion in its basic form,

we have the following:

x00 þ damping termþ o2
n x¼ eI f ðcLÞ; ð13Þ

where x is the displacement in the lift direction, f(cL) is a forcing function related to the lift (wind) coefficient, cL, and e1
is a constant related to the mass of the cylinder, with on being the natural frequency of the cylinder. The prime denotes

differentiation with respect to time, t.

Now considering the lift force function, f(cL) as a product of the static pressure and the cross-sectional area of the

cylinder, i.e. 1
2
rv2DLcL and e1=M�1, the equation is reduced to

x00 þ damping termþ x¼ ð1=MÞDL1
2
rv2cL; ð14Þ

where M is the mass of the cylinder of diameter D, and length L, r the density of the fluid medium, v the velocity of the

fluid stream, and cL the lift (wind) coefficient, with on being the natural frequency of the cylinder.

Expressing the aerodynamic equation in a similar form, we have

c00L þ damping termþ o2
s cL ¼ e2

f ðxÞ

L
; ð15Þ

where f(x)/L is a forcing function per unit length related to the motion of the cylinder. The forcing function is expressed

per unit length to be consistent with the final expression for the forcing function in the equation of motion and also for

dimensional consistency of the equation. By analogy with Eq. (13), e2 is a function of the wind mass, represented by rair
Vair, the product of the density of the fluid medium and the contributing volume of air; os ¼ 2pfs is the Strouhal circular

frequency.

From analyses carried out, and using a series expression for the forcing function, the lift coefficient, cL, was observed

to be proportional to the amplitude of vibration, before and up to the end of the synchronization region. This behavior

is consistent with the results of the experiments of Bishop and Hassan (1964).

Introducing t¼ont and noting that

d2cL

dt2
¼o2

n

d2cL

dt2
;

d2xr

dt2
¼o2

n

d2xr

dt2
:

Eqs. (14) and (15) can be written using dimensionless parameters in the t domain as

€xr þ damping termþ xr ¼ ð1=MÞL
1
2
rv2cL

o2
n

; ð16Þ

€cL þ damping termþ o2
0cL ¼ e2

f ðxrÞD

o2
nL

; ð17Þ

where xr is the dimensionless lift displacement x/D, and o2
0 ¼o2

s=o
2
n.

Setting up a recurrence relation for f(xr), we have

f ðxrÞ ¼ kcðxr þ Dt: _xrÞ; ð18Þ

where kc is the stiffness of the cylinder in the lift direction. This form is chosen since xr is the lift displacement; therefore,

the lift force is a product of this ‘‘displacement’’ and the corresponding stiffness. A truncated series expression is used in

lieu of a single term to avoid secular definitions which may lead to divergence.

Now recalling that kc/on
2 is the mass (M) of the cylinder and assuming the contributing volume of air is proportional

to the volume of the cylinder, Eq. (17) can be written in a dimensionally consistent form as follows:

€cL þ damping termþ o2
0cL ¼ e0

4M

prairDL2
ðxr þ Dt €xrÞ; ð19Þ

where the term e0 is a proportionality constant, since the contributory volume of air was assumed to be proportional to

the cylinder volume. It should be noted that the constant term on the right-hand side of Eq. (19) bears a similarity to the

Scruton number, except for the damping ratio.
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The two equations given below are chosen to represent the isolated system. They are the general second-order

equation of motion and the modified Rayleigh equation:

€xr þ 2z _xr þ xr ¼ ao2
0cL; ð20Þ

€cL�ao0 _cL þ
g
o0

_c3L þ o2
0cL ¼ e0

4M

prairDL2
ðxr þ Dt _xrÞ: ð21Þ

These equations are similar to the system of equations developed by Hartlen and Currie (1970), with the exception of

the forcing term in the aerodynamic equation being modified. The parameters a and g are damping terms, with a being a
negative damping term and g a positive damping term. The forcing function of the aerodynamic Eq. (20) is related to

the motion of the cylinder. The constant a=rD2l/(8p2S2M), where S is the Strouhal number.

The damping function in the aerodynamic equation (21) is used in preference to the classical Rayleigh equation since

the limit cycle in this form is independent of the reduced velocity, o0, whereas the classical model shows some

dependence on the reduced velocity. The classical form also has one damping constant, whereas the form chosen here

has two damping terms, which gives greater flexibility in the evaluation of the parameters to match the various

experimental data available.

The model developed here is that proposed by Williams and Suaris (2006). The method used for the solution of the

system of equations was the finite difference approximation. A parametric study was carried out on the Rayleigh

equation using the Euler method. From this analysis, the limit cycle was found to be independent of the initial

conditions, cL0, and dependent solely on a and g. In applying the finite difference approximation to the solution of the

system equations (20) and (21), the values for x�1 and €x0 were generated from recurrence relationships. A Fortran 90

compiler was utilized to generate the algorithms. The time step used, along with the precision of the compiler eliminated

the presence of nonlinear instability due to manipulation of small numbers.

3.2. Parametric study on the modified Rayleigh oscillator

The form of the Rayleigh equation chosen is as follows:

€cL�ao0 _cL þ
g
o0

_c3L þ o2
0cL ¼ 0: ð22Þ

The numerical solution represented in the phase plane for various initial conditions is shown in Figs. 3–6. In the

figures, cL represents the value of the lift coefficient, and _cL its first derivative with respect to t. The values of the

parameters, a g and o0 are set at unity. The results of this part of the analysis indicate that the radius of the limit cycle is

approximately 1.25 for the parameter values chosen, and it is independent of the initial conditions of the system. This

observation contrasts to the Hartlen and Currie (1970) relationship, where the solution was dependent on the initial

conditions of the system. A similar analysis, keeping the initial condition constant along with the parameters a and g,
and varying the frequency of the system o0, indicates that the limit cycle is again independent of o0. This highlights the

robustness of the chosen form of the Rayleigh equation and confirms its suitability for use in the development of an

aerodynamic lift response model.
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Fig. 3. System response with initial condition, CL0=0.4; lift response, CL, versus time, t.
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Phase Diagram
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Fig. 4. Phase plane plot of system response with initial condition, CL0=0.4.
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Fig. 5. Phase plane plot of system response with initial condition, CL0=0.8.
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The relaxation oscillations of this nonlinear system are persistent; therefore models incorporating its use will tend to

be structurally stable. From the analysis above, the limit cycle was a permanent feature of the phase portrait, even with

the introduction of small perturbations. This insensitivity to small changes indicates that the model equation is robust.

The bifurcation of the equation was, however, evident as the parameters a and g were varied while keeping the initial

conditions and the frequency o0 constant. The limit cycle grew in size away from the fixed point as the parameter a
increased. This Hopf bifurcation is consistent with the behavior of the Rayleigh equation. The g term behaved as a

positive damping term. Therefore, in using the Rayleigh oscillator for the proposed model, only variations in the

parameters a and g are considered when matching the results of various experimental series.
3.3. Calibration of the model parameters

The experimental work of Brika and Laneville (1993), Kitagawa et al. (1997), and Goswami et al. (1993), was used to

evaluate the parameters a and g. Expressing Eq. (21) in a form that is numerically manageable, the constant term e0 is
chosen so as to make the coefficient unity for Goswami’s experimental series. The values for all the other tests were

pro-rated in accordance with their respective values of the term, (4M/L)/(prairDL).

The terms a and g are damping terms, with a, being a negative damping term that affects the location of the maximum

amplitude and g a positive damping term. Both these terms were taken as being related to the Scruton number, Sr,

which is related to the damping ratio. The Scruton number was chosen in preference to the damping ratio since its value

provides greater flexibility, as its size is numerically manageable.

The Scruton number is defined as

Sr¼mz=ðrD2Þ; ð23Þ

where m is the mass per unit length of the cylinder, D the diameter of the cylinder, z the damping ratio, and r the density

of the fluid medium. This number reflects the effect of the fluid–structure mass ratio and the level of mechanical

damping in the system.

Fig. 7 shows the variation in maximum amplitude, Xmax, with the Scruton number. The experimental values are taken

from previous investigations.

Once the values of the parameters have been identified for the relevant experiments, a simple regression analysis was

carried out using the Scruton number as the independent variable. From this analysis, the parameters a and g were

established as

a¼ 2:13e�Sr; ð24Þ

g¼ 0:0136 eSr þ 0:36: ð25Þ

Figs. 8 and 9 show the results of the analytical model compared with the experimental results of Goswami et al.

(1993), for two damping ratios.
Fig. 7. Maximum amplitude, Xmax versus the Scruton number. Source: Williams and Suaris (2006).
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4. Mathematical existence of solution

This section covers the properties of the model equation that make it suitable for simulating the aerodynamic

behavior of mechanical systems. It is to be noted that the methods that were used for solving the ordinary differential

equations include Euler’s method and the finite difference approximation. This section considers some of the important

mathematical concepts for the existence and the uniqueness of solutions. As a matter of interest, with modern day

approaches, such as the finite element technique, most partial differential equations can be reduced to a set of ordinary

differential equations, so that the methods used in this paper can be applied to the solution of most analytical problems.
4.1. Continuity

Every differentiable function is continuous, but the converse is not always true. One example of this is the function,

f ðxÞ ¼ jxj. This function is continuous, but it is not differentiable. So, for our present problem of examining
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aerodynamic behavior of a structure, represented by

€xr�1 þ 2z1 _xr�1 þ xr�1 ¼ a1o2
0�1cL�1; ð26Þ

€cL�1�ao0�1 _cL�1 þ
g1

o0�1
ð_cL�1Þ

3
þ o2

0�1cL�1 ¼ e f ðxr�1Þ; ð27Þ

it has been established that the variables in these equations are differentiable, and therefore continuous. In order to

prove the above statement, let us consider a function f(t), which is differentiable at t=a. This implies that ( _f ðaÞ,
such that

limt-a
f ðtÞ�f ðaÞ

t�a
¼ _f ðaÞ: ð28Þ

Then for any e40, ( a value d40 such that

_f ðaÞ�eo
f ðtÞ�f ðaÞ

t�a

����
����o _f ðaÞ þ e; ð29Þ

whenever

0ojt�ajod: ð30Þ

Simplifying Eq. (29), we have

ð _f ðaÞ�eÞjt�ajojf ðtÞ�f ðaÞjoð _f ðaÞ þ eÞjt�aj: ð31Þ

On the right-hand side of Eq. (31) we have

jf ðtÞ�f ðaÞjo_e; ð32Þ

where

_e ¼ ð _f ðaÞ þ eÞjt�aj: ð33Þ

This implies that _e is defined. And since _e is defined, f(a) must be defined since jf ðtÞ�f ðaÞj exist. Then, it follows

that f(a) is defined. Therefore, we can assume that f ðtÞ is continuous at t=a. And it can generally be stated that for a

single-valued function of t to be continuous at t=a, three conditions must be satisfied:
(i)
 Condition 1: limt-af ðtÞ exists.

(ii)
 Condition 2: The function is defined for the value t=a.
(iii)
 Condition 3: limt-af ðtÞ ¼ f ðaÞ.
If these conditions are not all satisfied, the function is discontinuous.

4.2. Existence and uniqueness of solutions

This section considers a system of n first order ordinary differential equations in normal form, that is

_c1 ¼C1ðc1; ::::; cn; tÞ;

^

_cn ¼Cnðc1; ::::; cn; tÞ:

8><
>: ð34Þ

Ci are given functions of the nþ1 real variables, c1,y,cn, t. Therefore, the object is to find solutions of Eq. (34), that

is, sets of n functions c1ðtÞ; . . . ; cnðtÞ of class ‘1, which satisfy Eq. (34). The functions Ci are assumed to be continuous

and real-valued in a given region R of the (nþ1)-dimensional space of the independent variables c1; . . . ; cn; t.
First-order systems of differential equations (Eq. (34)), provide a standard form to which all ordinary differential

equations and systems of differential equations can be reduced. This can be achieved by matrix reduction as discussed in
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Arrowsmith and Place (1982). Therefore, the theory outlined here for the existence and uniqueness of solutions of

differential equations and systems of differential equations will be generalized for first-order systems.

Now, introducing vector notation, Eq. (34) can be reduced to a more concise form, which can be termed a normal

first-order vector differential equation. This is written as

d~c

dt
¼ ~C ð~c; tÞ: ð35Þ

Therefore, a solution of Eq. (35) is a vector-valued function ~cðtÞ of a real (scalar) variable t, such that
_~c ðtÞ ¼ ~C ð~cðtÞ; tÞ.
In order to make use of vector notation for systems of differential equations, we need to list a few facts about vectors

in n-dimensional Euclidean space. They are as follows:
(i)
 addition of two vectors and multiplication of vectors by scalars are defined component-wise as in the plane and in

space;
(ii)
 the length of a vector ~c ¼ ðc1; c2; :::; cnÞ is defined as j~cj ¼ ðc21 þ c22 þ � � � þ c2nÞ
1=2;
(iii)
 length satisfies the triangle inequality, that is j~c þ~xj � j~cj þ j~xj;

(iv)
 the dot product or inner product of two vectors is defined as ~c �~x ¼ c1x1 þ � � � þ cnxn;
(v)
 the dot product satisfies the Schwarz inequality j~c �~xj � j~cj � j~xj; and

(vi)
 integration, differentiation and other such functions are carried out component by component as in vector

addition.
4.3. Initial value definition

The cylinder is considered initially at rest with no initial displacement, therefore

xr�1ð0Þ ¼ 0; _xr�1ð0Þ ¼ 0: ð36Þ

The other initial conditions needed for complete definition of the problem are the time derivative of the lift coefficient

for the cylinder, _cL�1ð0Þ. To define this value, we first consider the lift force on this upstream cylinder, FL(t). By
definition

FLðtÞ ¼KLcLðtÞ; ð37Þ

where KL is a constant value.

Now, using a forward difference approximation for the first time derivative of the lift coefficient, we have

_cLð0Þ �
cLðDtÞ�cLð0Þ

Dt
; ð38Þ

where cL(Dt) is the lift coefficient at time Dt. Intuitively, the lift force is generated only after vortices are shed by the

structure. This indicates that there is a time lag between the fluid flow past the structure and the lift force applied to the

structure. Therefore, for some finite time interval, equal to or less than this lag, Dt, cL(Dt) is equal to zero. So, for a time

step, Dt, chosen small enough, and not equal to zero, cL(Dt) would be zero, leaving the numerator of Eq. (38) equal

to zero.

Therefore, _cL�1ð0Þ can be assumed zero for the cylinder, and the four initial conditions for definition of Eqs. (26) and

(27) for the proposed model have been established.

4.4. Lipschitz condition

If a solution to a differential equation is found which satisfies all the boundary (initial) conditions, then it is the only

solution to that equation. This is called the uniqueness theorem. In physical problems, a reasonable approach to finding

solutions to differential equations would be to use a trial solution and try to force it to fit the boundary conditions.

This section introduces a fundamental definition that is used in the uniqueness theorem. The definition is stated: a

vector-valued function ~C ð~c; tÞ satisfies a Lipschitz condition in a region R of (c,t) space if and only if, for some
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finite Lipschitz constant L,

j~C ðc; tÞ�~C ðd; tÞj � Ljc�dj if ðc; tÞ 2 R; ðd; tÞ 2 R: ð39Þ

Both terms on the left-hand side of Eq. (39) involve the same value of t.
For differential equations to be useful in predicting the future behavior of a physical system from its present state,

their solutions must exist, be unique, and depend continuously on their initial values. When all these conditions are

satisfied, the initial value problem is said to be well set. And it can be further stated that, if ~C satisfies a Lipschitz

condition, then the vector differential equation, Eq. (35), defines a well-set initial value problem i.e. the solutions exist

and are unique.

Now, here is a system, Eqs. (26) and (27) of two, second-order differential equations:

€xr�1 þ 2z1 _xr�1 þ xr�1 ¼ a1o2
0�1cL�1; ð40Þ

€cL�1�ao0�1 _cL�1 þ
g1

o0�1
ð_cL�1Þ

3
þ o2

0�1cL�1 ¼ ef ðxr�1Þ: ð41Þ

Making the substitution x1=xr�1, x2 ¼ _xr�1, c1=cL�1, and c2 ¼ _cL�1, we can convert the system above to an

equivalent system of four first order differential equations as follows:

_x1 ¼ x2; _x2 ¼ a1o2
0�1c1�2z1x2�x1; ð42; 43Þ

_c1 ¼ c2; _c2 ¼ e:f ðx1Þ þ ao0�1c2�
g1

o0�1
ðc32Þ�o

2
0�1c1: ð44; 45Þ

Simplifying the above into a more general form, we have

_x1 ¼ x2; _x2 ¼�D
˜
x2�x1 þ G

˜
c1; ð46; 47Þ

_c1 ¼ c2; _c2 ¼Dc2�Ec32�Fc1 þ Gf ðx1Þ; ð48; 49Þ

where D
˜
, G

˜
, D, E, F, and G represent the coefficients of the corresponding variables in Eqs. (42)–(45), and f(x1) is a

general function of x1 which can be taken as equal to x1 in this case without loss of generality. The dot in the equations

denotes the derivative with respect to t. Eqs. (46)–(49) can be further simplified to give

_x1 ¼X1; _x2 ¼X2; _c1 ¼C1; _c2 ¼C2; ð50; 51; 52; 53Þ

where these equations are for the cylinder with X1, X2, C1, and C2 defined as follows:

X1 ¼ x2; X2 ¼�D
˜
x2�x1 þ G

˜
c1; C1 ¼ c2; C2 ¼Dc2�Ec32�Fc1 þ Gf ðx1Þ: ð54; 55; 56; 57Þ

Eqs. (54)–(57) can be reduced to

~X ð~x; tÞ ¼
X1ðx1; x2; tÞ

X2ðx1; x2; tÞ

( )
; ~C ð~c; tÞ ¼

C1ðc1; c2; tÞ

C2ðc1; c2; tÞ

( )
ð58; 59Þ

involving vector valued functions ~X ð~x; tÞ, ~C ð~c; tÞ. The next step shows that the right hand side of Eqs. (54)–(57) satisfies

a Lipschitz condition. Referring to Eq. (39) and carrying out the Lipschitz test for the cylinder, i.e. in Eqs. (54)–(57),
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and considering this equation as a coupled vector, the Lipschitz inequality becomes

���������

���������

X1ðx2; tÞ�X1ðy2; tÞ

X2ðx1; x2; c1; tÞ�X2ðy1; y2; d1; tÞ

C1ðc2; tÞ�C1ðd2; tÞ

C2ðc1; c2;x1; x2; tÞ�C2ðd1; d2; y1; y2; tÞ

8>>>><
>>>>:

9>>>>=
>>>>;

���������

���������
� L

���������

���������

x1�y1

x2�y2

c1�d1

c2�d2

8>>><
>>>:

9>>>=
>>>;

���������

���������
: ð60Þ

Further, expanding the left-hand side of Eq. (60) and using Eqs. (54)–(57), we have���������

���������

x2�y2

ð�D
˜
x2�x1 þ G

˜
c1Þ�ð�D

˜
y2�y1 þ G

˜
d1Þ

c2�d2

ðDc2�Ec32�Fc1 þ Gx1Þ�ðDd2�Ed3
2�Fd1 þ Gy1Þ

8>>>><
>>>>:

9>>>>=
>>>>;

���������

���������
: ð61Þ

Next, on simplifying Eq. (61), we have���������

���������

0 1 0 0

�1 �D G
˜

0

0 0 0 1

G 0 �F D�Eðc22 þ c2d2 þ d2
2 Þ

2
66664

3
77775

x1�y1

x2�y2

c1�d1

c2�d2

8>>><
>>>:

9>>>=
>>>;

���������

���������
: ð62Þ

Then, making use of the Schwarz Inequality for two vectors ~A and ~B, which states

:~A � ~B: � :~A: � :~B: ð63Þ

and comparing Eq. (62) with the left-hand side of Eq. (63), and referring to Eq. (39), we obtain the result that the

one-norm of matrix A in Eq. (62) serves as a suitable Lipschitz constant. The one-norm is chosen since it is subordinate

to the vector sum norm, which implies that the inequality stated in Eq. (63) will always be satisfied (Young and

Gregory, 1973). It is to be noted here that the matrix one-norm of A is positive and larger than unity since by definition

the one-norm of matrix A is

jjAjj1 ¼max
j

Xn

i ¼ 1

aij : ð64Þ

It must be mentioned here that there is no loss of generality in the above analysis which was carried out on the system

of equations for the cylinder since the system of equations for the cylinder were the general form of the equation of

motion and the Rayleigh equation.
5. Summary

For the model proposed by Skop and Balasubramanian (1997), it is not clear that for a stationary structure, where _y
is zero, the equation has a self-limiting solution, i.e.

€q�osGðC
2
L0�4q2Þ _q þ o2

s q¼osF _y;

where q is proposed to take the form

q¼CL0 sinost:

From observation, the _q term does not cancel out and the statement that C2
L051 does not hold for general cases, thus

making the relation for a self-limiting solution invalid. Also, the governing Van der Pol oscillator equations are
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transcendental in nature; therefore, the current approach would be to generate numerical solutions rather than explore

some quasi-closed form solutions as proposed by Facchinetti et al. (2004).

Basically from the literature reviewed, the form of the Rayleigh equation used by Skop and Balasubramanian (1997)

and developed by Facchinetti et al. (2004) is of the classical form, and the ‘‘quasi’’ nonlinear term _q; q indicates that the

Lipschitz condition cannot be satisfied, and as a result the problem becomes ill-defined and a numerical solution may

not be easily formulated. For this reason, the model proposed by Williams and Suaris (2006), is preferred since this

model produces a well-defined problem and from actual research, in comparing with actual cylinders subjected to

aerodynamic excitations, proves to converge to the observed results.
6. Conclusions

Convergence is taken to mean that the numerical or difference method applied to the solution of the differential

equation approaches the exact solution to the differential equation as the step size approaches zero, assuming there is

no round off error. In general, in applying difference methods to cases where the data is not well behaved in the classical

sense, convergence is still achieved as discussed in Theorem 2.1 in Chartres and Stepleman (1971), and further

elaborated as Theorem 1 in Feldstein and Goodman (1973).

In the classical situation, the convergence theorem of Young and Gregory (1973) shows that the truncation error or

discretization error in Euler’s method goes to zero as the step size goes to zero. In contrast, it can be shown (Young and

Gregory, 1973) that, as the step size goes to zero, the round-off error increases. This means that the step size should not

be reduced to approach zero indefinitely. Also, from the results of the analysis carried out in this paper, it is interesting

to note that the finite difference approximations produce results which converge from below, i.e. lower bound solutions

are obtained, or in other words the exact solution is greater than the approximate solution. This can be stated as

Xapprox � Xexact: ð65Þ

This has both advantages and disadvantages from an engineering point of view.

The concept of stability discussed in this section is a joint property of the numerical method and the differential

equations under investigation. For a convergent method, the fundamental solution approximates the exact solution as

the time step goes to zero and the round-off error neglected. Now, when the fundamental solution is overpowered by

parasitic solutions or solutions that feed on the errors in the numerical solution, i.e. truncation and round-off errors,

then instability results.

For the analysis carried out, numerical solutions were obtained with varying step sizes, and these showed no

significant differences; therefore the system was considered stable and there was no need to try alternative solution

methods.
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